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Abstract: Periodical outbreaks of Thaumetopoea pityocampa feeding on pine needles may pose a threat to
Mediterranean coniferous forests by causing severe tree defoliation, growth reduction, and eventually
mortality. To cost–effectively monitor the temporal and spatial damages in pine–oak mixed stands
using unmanned aerial systems (UASs) for multispectral imagery, we aimed at developing a simple
thresholding classification tool for forest practitioners as an alternative method to complex classifiers
such as Random Forest. The UAS flights were performed during winter 2017–2018 over four study
areas in Catalonia, northeastern Spain. To detect defoliation and further distinguish pine species,
we conducted nested histogram thresholding analyses with four UAS-derived vegetation indices (VIs)
and evaluated classification accuracy. The normalized difference vegetation index (NDVI) and NDVI
red edge performed the best for detecting defoliation with an overall accuracy of 95% in the total
study area. For discriminating pine species, accuracy results of 93–96% were only achievable with
green NDVI in the partial study area, where the Random Forest classification combined for defoliation
and tree species resulted in 91–93%. Finally, we achieved to estimate the average thresholds of VIs for
detecting defoliation over the total area, which may be applicable across similar Mediterranean pine
stands for monitoring regional forest health on a large scale.

Keywords: unmanned aerial systems (UAS); multispectral imagery; forest defoliation; Thaumetopoea
pityocampa; vegetation index; thresholding analysis

1. Introduction

Climate change is predicted to continue increasing global temperatures over this century [1],
which may lead to an alteration of forest disturbances including pest insects that are strongly
dependent on climatic variables [2–5]. Such a combination of biotic and abiotic disturbance factors
may accelerate forest damage as defoliation, growth reduction, and tree mortality in relation to global
changes [6]. In Mediterranean forests dominated by Pinus spp., outbreaks of the pine processionary
moth (Thaumetopoea pityocampa Dennis and Schiff.) have become more frequent over the past two
decades and have extended their spatial distribution due to warmer winters favoring the survival of
the pest [5–8]. Traditionally, annual forest health surveys by practitioners have been and still remain
the fundamental means for monitoring forest conditions at local and national administrative levels.
However, due to the recent pest expansion and associated threats to the forest health [9], a more
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frequent interannual monitoring system at a finer spatial scale is currently required to meet the demand
for keeping forest information up to date.

Consequently, the use of airborne-based UAS technology with enhanced spatial and temporal
resolutions has significantly increased over the past decade for detecting and monitoring forest
defoliation on host trees [10–16]. While spaceborne satellites have been more commonly used for
defoliation detection and time-series monitoring over large areas, their images can be either free
to the public at medium spatial resolutions (30–250 m) provided by Landsat and MODIS or costly
at high spatial resolutions (0.3–10 m) available from WorldView-4, IKONOS, QuickBird, RapidEye,
and TerraSAR-X [17]. Since medium-high spatial resolution images from Sentinel-2 (10–20 m) became
freely downloadable in 2015 [18], cost–effective monitoring of large areas is increasing. With such
further advancements in spaceborne technology, sensors’ spatial resolution continues to enhance
temporal and spectral resolutions [19]. Furthermore, airborne laser scanning (ALS) featuring point
clouds complements the three-dimensional (3D) structure besides capturing two-dimensional (2D)
imagery at higher spatial resolutions than any spaceborne technology [17,20]. Using such ALS metrics,
an innovative study by Kantola et al. [21] demonstrated the classification of defoliated Pinus sylvestris
at the individual tree level.

Since the cost of these satellite and ALS high-resolution products remains a limiting factor for
the purpose of targeting small operational areas, the use of cost-effective unmanned aerial systems
(UASs) as an alternative 3D technology at a high spatial resolution has increased in recent studies for
monitoring forest health over the past decade [19,22]. While initial studies with UASs were focused on
crop management for agriculture applications, the latest UAS technology has proved to be effective
for forestry applications as a sampling tool to acquire ground-truth data [11,23]. To date, only a few
studies have examined the classification accuracy of forest defoliation by insects using UAS imagery
applied to methods such as Random Forest [11], object-based image analysis (OBIA) [12,13], k–nearest
neighbor [10], maximum likelihood [14,15], and unsupervised classification [16], which demonstrated
that the UAS technology enabled to examine their defoliation detection method at individual tree level
with a high overall accuracy. An object-based classification approach with the Random Forest classifier
was used by Dash et al. [11] to predict discoloration classes of Pinus radiate in New Zealand, based on
spectral indices such as normalized difference vegetation index (NDVI) and red edge NDVI with the
kappa coefficient of 0.694. Lehmann et al. [12] used a blue NDVI to distinguish infested Quercus robur
in Germany by OBIA classification with overall accuracies of 82–85%. Another OBIA technique was
applied by Michez et al. [24] to assess defoliation and discoloration of Alnus glutinosa in Belgium using
vegetation indices (VIs) derived from red, green, blue (RGB) and near-infrared (NIR) bands, with an
overall accuracy of 90.6%. In Finland, with a combination of NDVI, NIR, red edge, and RGB bands,
Näsi et al. [10] detected infested Picea abies by object-based k-nearest neighbor classification with an
overall accuracy of 75%. Using a pixel-based approach, in Scotland, Smigaj et al. [25] extracted canopy
temperatures of Pinus sylvestris with a combination of thermal infrared (TIR) and NIR bands derived
from UASs to evaluate the correlation with the tree infection level estimated from the ground, resulting
in a moderate linear regression (R = 0.527). In the United States, Hentz and Strager [15] combined
RGB bands and elevation values to classify damage on deciduous trees using a pixel-based maximum
likelihood classification (MLC) technique, with the kappa coefficient of 0.86. Cardil et al. [14] also
used the MLC based on RGB bands to distinguish infested or healthy trees of Pinus spp. in Spain
with an overall accuracy of 79%, which was improved to 81% by adding an NIR band to classify three
categories of defoliation and using unsupervised classification with NDVI [16].

The traditional image classification by histogram thresholding analyses has been mainly used for
detecting shadow areas in satellite-based high spatial resolution images [26–30] as it is considered to
be the simplest to compute and minimize intraclass variance when a clear separation is observed in a
bimodal distribution [29,31,32]. However, no study has applied such a simple classification method,
combined with very high spatial resolution UAS imagery, to forestry applications. This is due to the
recent trend in research of UAS technology combined with object-based classification methods such as
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OBIA and Random Forest which have demonstrated excellent performance for analyzing complex high
spatial resolution data including multispectral, geospatial, and textural properties [33–37]. Although,
these object-based image classification techniques are generally considered to be more robust and
accurate [33–37], it may require extra knowledge and training with software applications to perform
such complex analysis correctly.

Based on the same study area analyzed by Cardil et al. [16] with UAS multispectral imagery for
quantifying defoliation degrees due to T. pityocampa in Catalonia where regional forest health surveys
are officially conducted on an annual basis, we seek for further improvements to their approach using
simple and robust methods applied to similar pine-dominated stands, for forest practitioners to obtain
timely information and monitor forest defoliation at the operational level. In this context, the main
objectives of this study are: (1) to explore simple histogram thresholding classification tools for forest
practitioners to detect defoliation of host pine trees affected by T. pityocampa using UAS-derived NIR
imagery and (2) to estimate the threshold values of various VIs averaged over our study areas for
detecting defoliation and distinguishing pine species at the pixel level to examine the robustness in
extended study areas. Achieving our objectives may provide forest practitioners with the classification
options of adopting the histogram thresholding method and directly applying the estimated average
threshold values according to selected VIs.

2. Materials and Methods

2.1. Study Area

The study was conducted in four pine-dominant stands, including Codo, Hostal, Bosquet,
and Olius in the region of Solsona, Catalonia, Spain (Figure 1a), covering 64 hectares in total where the
recent expansion of T. pityocampa has been recorded in the regional forest health inventory (Generalitat
de Catalunya). They represent a Mediterranean continental climate with hot dry summers and mild
wet winters at elevations ranging from 600 m to 1300 m. According to the Land Cover Map of Catalonia
(MCSC) for 2009, forest stands were typically dominated by Pinus nigra and P. sylvestris, which are
often mixed with evergreen oak species such as Quercus ilex.

2.2. UAS Image Acquisition and Processing

In this study, a quadcopter (Phantom 3, DJI) was used as an UAS platform, equipped with a high
spatial resolution multispectral camera (SEQUOIA, Parrot) carrying a payload of 72 g, to capture both
visible RGB and invisible NIR images simultaneously. The RGB camera has a resolution of 16 megapixel
with a lens focal length of 5 mm and fields of view (FOV) with horizontal (HFOV): 63.9◦, vertical
(VFOV): 50.1◦, and diagonal (DFOV): 73.5◦. In addition, another 1.2 megapixel sensor, with a lens focal
length of 4 mm, and fields of view with HFOV: 61.9◦, VFOV: 48.5◦, and DFOV: 73.7◦, captures four
spectral bands in green (530–570 nm wavelength), red (640–680 nm wavelength), red edge (730–740 nm
wavelength), and near infrared (770–810 nm wavelength). Both RGB and NIR images were collected
simultaneously from a flying altitude at 76–95 m above the ground level with 80% forward and side
overlap at speeds ranging from 4–8 per second, achieving a ground sample distance of 2.0 cm with
the RGB camera and 7.4 cm with the NIR camera, on average. Four flights were conducted in winter
2017–2018 on clear sunny days around noon to minimize the effects of clouds and shadows, covering
the total area of 64 hectares. The flight features with the RGB and NIR cameras were summarized
in Table 1.
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Figure 1. Location map of study areas in the region of (a) Solsona (41◦59′40” N, 1◦31′04” E) in red
line and Catalonia in blue line, projected in the UTM Zone 31 North showing: (b) Codo; (c) Hostal;
(d) Bosquet; and (e) Olius, with calibration ground control points in yellow georeferenced to orthophotos.

A total of 1042 adjacent photos, overlapped from the flights with their geotagged locations,
were processed separately for those captured with the RGB and NIR cameras in the software,
PhotoScan Professional 1.4.0 (Agisoft LLC, St. Petersburg, Russia). In image processing, the photos
were geometrically aligned to build a point cloud, 3D model, digital elevation model (DEM), and digital
surface model (DSM). For generating orthomosaic images, those composed of multispectral bands
were radiometrically corrected to calibrate the reflectance values corresponding to each band, by using
reflectance panels which were captured before each flight specific to the lighting conditions of the
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date, time, and location of the flight [38,39]. The use of a reflectance panel captured as an image of
calibrating a white balance card enabled the PhotoScan to recognize the images’ reflectance according
to known values of all spectral bands written on the panel for radiometric calibration [38]. Using the
ArcGIS version 10.5 software (ESRI, Redlands, CA, USA), each orthomosaic was georeferenced to the
1:2500 orthophotos [40] in the cartographic UTM projection by performing a first order polynomial
transformation with four ground control points (GCPs) of clearly visible features such as roads,
structures, and field edges across each study area (Figure 1b–e), obtaining an accuracy of sub-meter
root mean square error (RMS). As alternative ground validation data, we used the UAS orthomosaic
images and DSM captured at a very higher spatial resolution (2.0 cm) with the RGB camera.

Table 1. RGB and NIR imagery features for orthomosaic generation in the Agisoft PhotoScan.

Site
Codo Hostal Bosquet Olius

RGB NIR RGB NIR RGB NIR RGB NIR

Date (dd/mm/yy) 26/11/2017 19/01/2018 23/01/2018 30/01/2018
Time (duration) 12:43–12:50 12:05–12:14 12:16–12:22 11:55–12:03
Elevation (m) 1300 820 620 720

Flight height (m) 95 78 76 85
Area (ha) 14.1 16.2 7.4 26.3

Number of images 210 333 155 344
Data size (GB) 0.93 0.49 1.65 0.78 0.39 0.36 1.05 0.80

Processing time (h) 4.8 3.3 7.6 5.0 3.9 2.4 5.7 3.8
Software platform Microsoft Windows 7 (64 bits)

Ground resolution (cm/pix) 2.32 8.64 1.90 6.82 1.80 6.58 2.12 7.49
RMS re-projection error (pix) 2.45 0.66 2.51 0.70 2.34 0.64 2.19 0.62

2.3. Vegetation Indices

Given the four bands in NIR imagery obtained from UAS flights, we calculated vegetation indices
(VIs) which may extract the relevant information on different vegetation features for further analysis.
The chlorophyll absorption is very high in the visible spectrum, where the reflectance is the highest
for green wavelengths [17]. In shifting from the range of visible wavelengths to invisible towards
the NIR, the reflectance starts to increase for red edge wavelengths as the chlorophyll absorption
ceases [17]. For automated classification and repeated application, four normalized VIs based on
various combinations of spectral bands were selected as comparable thresholding values among the
four different study areas (Table 2). NDVI has been most commonly used for detecting land cover
change and mapping forest defoliation due to its sensitivity to low chlorophyll concentrations [17,41].
On the contrary, green NDVI (GNDVI) is sensitive to high chlorophyll concentrations and accurate
for assessing chlorophyll content at the tree crown level [41]. By exploring various combinations of
available spectral bands, we additionally examined the sensitivity of other indices such as green–red
NDVI (GRNDVI) and NDVI red edge (NDVIRE) to find the most sensitive VI to classify forest
defoliation and tree species.

Table 2. Vegetation indices derived from UAS multispectral bands.

Index Acronym Formula

Normalized Difference Vegetation Index NDVI NIR−Red
NIR+Red [42]

Green Normalized Difference Vegetation Index GNDVI NIR−Green
NIR+Green [41]

Green–Red Normalized Difference Vegetation Index GRNDVI NIR−(Green+Red)
NIR+(Green+Red) [43]

Normalized Difference Vegetation Index Red Edge NDVIRE RE−Red
RE+Red [44]
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2.4. Pixel-Based Thresholding Analysis

In this study, histogram thresholding analyses, known as the classical approach to classification [27,
29,45], were explored in a nested method for excluding shadow from sun pixels, detecting defoliation
from foliated green pixels, and discriminating pine from evergreen oak. Using the ArcGIS version
10.5 software, available spectral bands and Vis from the UAS-derived NIR imagery were analyzed
in a histogram distribution by the first valley detection thresholding with local minima. Figure 2
simplifies a workflow of the nested histogram thresholding analyses per study area, from the initial
shadow removal with the NIR band to the final separation of pixels by defoliation and tree species for
monitoring, so that this method can be repeated to conduct a time series image analysis.Drones 2019, 3, x FOR PEER REVIEW 6 of 23 
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Figure 2. Overall workflow of classification methods per study area by nested histogram thresholding
analyses, indicating pixel intensity on the x-axis and frequency on the y-axis, with four VIs derived
from NIR imagery for monitoring defoliated and foliated pine trees.

2.4.1. Shadow Removal

Although all flights were conducted around noon when the sun angle is considered to be minimum
to generate shadows in images, there are often some limitations to achieving shadow-free images.
Among several shadow detection algorithms suggested and compared by Adeline et al. [29], a histogram
thresholding analysis performed well as the most robust method and demonstrated good results with
an NIR band alone. Generally, the location of shadows in the histogram should be separated at the first
valley of multimodal distribution with two or more peaks [12,28,29]. We then applied the method,
first valley detection thresholding, using the UAS-derived NIR band to exclude shadow pixels from
further analysis to reduce uncertainty.

2.4.2. Defoliation Detection

Following shadow removal, shadow-free pixels in each study area were extracted by a mask of
pine-dominated forest polygons mapped on the MCSC. The same histogram thresholding approach
was applied to separate the masked pixels representing green tree crown from non-green in each study
area with four VIs (Table 2). In this analysis, green pixels with leaves were defined as foliated class,
while non-green pixels without leaves belonged to the defoliated class. While the previous study in the
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Codo area [16] applied pixel-based unsupervised classification with NDVI to calculate the percentage
of defoliation per tree crown area identified by individual tree delineation algorithm, in this study we
simply focused on determining the threshold values of four VIs and their variations among four study
areas as well as evaluating the performance of each VI.

2.4.3. Foliated Species Discrimination

To distinguish shadow-free foliated trees of pine species from evergreen oak, we first visually
interpreted RGB images. Once 10 pines and 10 evergreen oaks in each of two study areas (Codo and
Olius) were manually selected in RGB orthomosaic images (Figure 3a) and delineated to extract sample
pixels based on NIR imagery representing each species (Figure 3b), histogram thresholding analyses
were applied to those selected pixels showing the spectral profiles in Figure 3c. Relatively, the color
intensity and texture of pine species are softer than evergreen oak species [46]. Moreover, broadleaf
vegetation reflects notably higher values of NIR than needle-leaf vegetation [47] as observed in our
study area with spectral profiles of the two species for the wavelength range of 770–810 nm (Figure 3c).
However, the previous study in the Codo area [16] suggested that NIR alone or standard NDVI [42]
may not be sufficient to distinguish two species by thresholding analysis. Thus, for further exploring
species discrimination, we applied the histogram thresholding method with the three additional VIs
(Table 2) to pixels extracted by sample crown polygons. There were only a few evergreen oak samples
observed in the other two study areas (Hostal and Bosquet), which were not included in this analysis.
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2.5. Object-Based Random Forest

In contrast to determining threshold values for pixel-based classification, we used another method,
object-based Random Forest, with the advantage of analyzing combined data of multiple spectral
bands, spatial parameters, and textural properties. As shown in Figure 4a, color infrared (CIR) images
composed of NIR, red, and green bands were first computed for automatically aggregating adjacent
pixels that are similar in spectral properties as image segments (Figure 4b) in the ArcGIS version 10.5
software. To supervise Random Forest classification, sample data were then trained as segments of
shadow, defoliation, and tree species such as pine and evergreen oak, which were comparable to
the thresholding analysis in Codo and Olius study areas. CIR images may contain more effective
parameters as predictive indices characterized by relative color, color intensity, and texture [46].
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Figure 4. Comparison of: (a) CIR image and (b) segmentation of the CIR-derived pixels that are similar
in spectral properties as image objects.

2.6. Validation and Accuracy Assessment

Ground validation data were obtained by photointerpretation of the RGB orthomosaic images
(Figure 5a) and DSM (Figure 5b), at a very high spatial resolution (2.0 cm), which was higher than the
resolution of NIR imagery (7.2 cm) based on the separate multispectral camera from the same UAS
flight. The DSM profile, in particular, enabled to generate a 3D stand structure and distinguish soils
from defoliated tree branches, which might have been misinterpreted due to the similar colors in the
RGB orthomosaic images. We then observed plots of the RGB images classified as: (1) shadow or
sun pixels, (2) defoliated or foliated for the sun pixels, and (3) pine or evergreen oak species for the
foliated pixels. Such validation by photointerpretation has been increasingly used as an alternative to
conventional ground truth data in recent studies with promising results [15,16,48–50].

In each study area 100 pixels were randomly selected to assess the accuracy of final classification
results by histogram thresholding analyses and Random Forest, separately, with predicted indices
derived from the NIR imagery, in reference to ground observations based on the RGB orthomosaic
images. A confusion matrix was then generated to compare producer’s and user’s accuracy
indicating omission and commission errors, respectively, as well as overall accuracy. To explore
the uncertainty in the best performed results over the total study area, the overall accuracies were
further investigated in a sensitivity analysis, testing the robustness of the estimated thresholds by
increasing and decreasing values.
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3. Results

3.1. Pixel-Based Thresholding Analysis

3.1.1. Shadow Removal

A multimodal histogram distribution of NIR values was shown by study area in Figure 6, with the
first valley determined as the thresholding value to exclude shadow pixels indicating the lowest class
of reflectance in the NIR band. As shown in Figure 6a for the Codo area, those pixels with a value
smaller than 17 were classified as shadow areas, accounting for 29% of the total number of pixels,
thus excluded to reduce uncertainly. Likewise, shadow areas resulted in 14% for Hostal (Figure 6b),
17% for Bosquet (Figure 6c), and 35% for Olius (Figure 6d) study areas. We found a variation in the
threshold values among the four study areas compared in Table 3, ranging from 17–28.

Table 3. Summary of threshold values determined by multimodal histogram distributions with various
indices for classifying shadow, defoliated, and tree species.

Classification Index Codo Hostal Bosquet Olius Total Average

Shadow NIR 17 23 27 28 24

Defoliated

NDVI 0.584 0.529 0.481 0.490 0.52
GNDVI 0.561 - - 0.393 -

GRNDVI 0.295 0.254 0.171 0.175 0.22
NDVIRE 0.515 0.475 0.416 0.431 0.46

Species

NDVI - - - - -
GNDVI 0.681 - - 0.631 -

GRNDVI 0.539 - - - -
NDVIRE - - - - -

3.1.2. Defoliation Detection

Each histogram distribution of pixel values calculated for NDVI, GNDVI, GRNDVI, and NDVIRE
was presented in Figure 7 for the Codo study area. The final valley of multimodal distribution
determined the threshold value to separate the highest class of reflection in each index classified as
foliated to mask green tree crown pixels. All threshold values determined by the same method in the
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other three study areas (Figures A1–A3) are summarized in Table 3, with a various range of NDVI
(0.481–0.584), GNDVI (0.393–0.561), GRNDVI (0.171–0.295), and NDVIRE (0.416–0.515) including the
average values. We found some exceptions for those unimodal distributions with no valley detected
with GNDVI in Hostal (Figure A1b) and Bosquet (Figure A2b).
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3.1.3. Foliated Species Discrimination

For discriminating species between pine and evergreen oak in Codo and Olius study areas,
shadow-free foliated pixels were classified as shown in Figure 8. Among the four VIs analyzed, GNDVI
and GRNDVI resulted in a bimodal distribution in Codo (Figure 8b,c), revealing two distinguishable
species classes between pine and evergreen oak, while the rest of our results with NDVI (Figure 8a) and
NDVIRE (Figure 8d) did not achieve this distinction. The first valley of bimodal distribution, indicating
the lower class of reflectance in each index, was classified as pine to mask host tree species. In Olius,
on the other hand, only the histogram with GNDVI showed a bimodal distribution (Figure A4b).
However, we found that the threshold value of GNDVI for separating pine from evergreen oak in
Codo (0.681) was notably close to the one (0.631) in Olius, as summarized in Table 3.
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Figure 8. The valley detection thresholding to discriminate pine toward lower VI values from evergreen
oak, with pixel intensity on the x-axis and frequency on the y-axis, in the Codo study area with: (a)
NDVI; (b) GNDVI; (c) GRNDVI; and (d) NDVIRE.

The above results of histogram thresholding analysis are illustrated in Figure 9, starting with a
CIR image (Figure 9a) overlaid with NIR highlighting shadow pixels in gray (Figure 9b). Following
shadow removal, the CIR image was overlaid with GNDVI highlighting shadow-free defoliated pixels
in meshed yellow and foliated pixels in green (Figure 9c), which were further classified and highlighted
as pine in blue and evergreen oak in purple (Figure 9d).

3.2. Object-Based Random Forest

As shown in Figure 9e, image segmentation enabled the aggregation of adjacent pixels with similar
spectral properties in CIR imagery (Figure 9a). Following training sample segments with supervised
Random Forest classification, the resultant segments were classified into shadow, defoliated, pine,
and evergreen oak (Figure 9f) in comparison to the results of thresholding classification (Figure 9d).
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Figure 9. Process of histogram thresholding analysis in Codo: (a) CIR image; (b) CIR image with NIR
highlighting shadow pixels in gray; (c) CIR image with GNDVI highlighting foliated pixels in green
and defoliated in meshed yellow; and (d) CIR image with GNDVI highlighting foliated pines in blue,
foliated evergreen oaks in purple, and defoliated in meshed yellow. The process of Random Forest
classification in Codo: (e) CIR-derived segmentation as image objects and (f) supervised Random
Forest classifying shadow in gray, defoliated in yellow, pine in blue, and evergreen oak in purple.

3.3. Validation and Accuracy Assessment

Classes defined by histogram thresholding analyses (Tables 4–7) and Random Forest (Tables 8
and 9) were validated by a confusion matrix evaluating shadow, defoliation, and species with referenced
RGB images and DSM as ground observations. The confusion matrix for classifying shadow and sun is
detailed in Table 4 based on totaling 400 randomly selected pixels, showing that the higher producer’s
accuracy was 96% for the sun class where 212 out of the 220 pixels observed as sun were correctly
classified by predicted NIR, while the shadow class showed a higher user’s accuracy of 95% where
167 out of the 175 pixels predicted as shadow correctly represented the observed class. To analyze
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any variation among all study areas, overall accuracies were calculated by each area to compare the
performance to the one totaled in Table 5, resulting in a total overall accuracy of 95% without any
significant discrepancy by study area.

Table 4. Confusion matrix of NIR for shadow removal in the four study areas with the total of 400
randomly selected pixels, referenced to RGB images as ground observations.

Class
Predicted

Shadow Sun Total Producer’s Accuracy

Observed

Shadow 167 13 180 93%
Sun 8 212 220 96%
Total 175 225 400

User’s Accuracy 95% 94% 95%

Table 5. Summary of overall accuracies from the confusion matrix of NIR in the four study areas for
shadow removal, with each 100 randomly selected pixels referenced to ground observations.

Index Codo Hostal Bosquet Olius Total

NIR 96% 93% 96% 94% 95%

Table 6. Summary of overall accuracies from the confusion matrix of four VIs in the four study areas
for defoliation detection, with each 100 randomly selected pixels referenced to ground observations.

Index Codo Hostal Bosquet Olius Total

NDVI 93% 91% 97% 98% 95%
GNDVI 91% - - 86% -
GRNDVI 93% 84% 95% 97% 92%
NDVIRE 94% 90% 97% 97% 95%

Table 7. Summary of overall accuracies from the confusion matrix of GNDVI in the Codo and
Olius study areas for species discrimination, with each 100 randomly selected pixels referenced to
ground observations.

Index Codo Hostal Bosquet Olius Total

GNDVI 96% - - 93% -

Table 8. Summary of overall accuracies from the confusion matrix of Random Forest classification in
Codo study area for shadow, defoliated, and species, with 100 randomly selected pixels referenced to
ground observations.

Class
Predicted

Shadow Defoliated Pine Oak Total Producer’s Accuracy

Observed

Shadow 22 1 3 0 26 85%
Defoliated 0 31 0 0 31 100%

Pine 0 1 21 2 24 88%
Oak 0 0 0 19 19 100%
Total 22 33 24 21 100 -

User’s Accuracy 100% 94% 88% 90% - 93%
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Table 9. Summary of overall accuracies from the confusion matrix of Random Forest classification in
Olius study area for shadow, defoliated, and species, with 100 randomly selected pixels referenced to
ground observations.

Class
Predicted

Shadow Defoliated Pine Oak Total Producer’s Accuracy

Observed

Shadow 22 1 1 0 24 92%
Defoliated 0 26 0 0 26 100%

Pine 0 2 26 0 28 93%
Oak 4 0 1 17 22 77%
Total 26 29 28 17 100 -

User’s Accuracy 85% 90% 93% 100% - 91%

For classifying defoliated and foliated pixels, overall accuracies were assessed in the same manner
and compared among the four predicted VIs in the four study areas (Table 6). When the total overall
accuracy based on totaling 400 randomly selected pixels was calculated per study area, NDVI and
NDVIRE equally performed the best with a total overall accuracy of 95%, followed by GRNDVI with
92%, while it was not evaluable with GNDVI due to undetermined threshold values in Hostal and
Bosquet. Since we were also able to estimate the average thresholds of best performed NDVI and
NDVIRE over the total study area, the accuracy assessment was complemented with a sensitivity
analysis, shifting the average threshold values by 0.02–0.1. As shown in Figure 10a,b, the optimal
threshold values (0.50 for NDVI and 0.44 for NDVIRE), where the difference in overall accuracies is
the smallest across the four study areas, were highlighted resulting in slightly lower values than the
estimated average.
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For evaluating the accuracy of species discrimination, we conducted a third confusion matrix in
the same manner by assessing overall accuracies with GNDVI in each of two study areas, Codo and
Olius, as shown in Table 7. With an overall accuracy of 96%, GNDVI performed better in Codo study
area than in Olius (93%). After visual inspection, we found that most errors derived from those
randomly selected pixels that occurred to be near the boundary area between two classes.

Finally, Tables 8 and 9 by study area show the integrated confusion matrix of object-based Random
Forest, which enabled to segment CIR images composed of three spectral bands and distinguish four
classes of shadow, defoliated, pine, and evergreen oak at the same time with overall accuracies of 93%
in Codo and 91% in Olius, as high as those results combined from Tables 5–7.

4. Discussion

Our methodology explored the capabilities of UAS-derived high spatial resolution NIR imagery
for monitoring forest defoliation caused by T. pityocampa in small pine-dominated stands mixed with
evergreen oak. Using a simple histogram thresholding analysis as a classification technique, the overall
results showed that specific spectral bands or NIR-derived VIs perform better than the others for
discriminating shadow, defoliation, and foliated tree species, which was determined by accuracy
assessment in a confusion matrix. In contrast to this simple classification approach, we also used a
more complex and robust object-based image classification technique with Random Forest, resulting in
overall excellent performance as expected from the literature reviews [33–37].

4.1. Shadow Removal

Shadow detection using a histogram thresholding analysis with an NIR band has been explored
in several studies on forest areas following urban and agricultural areas [29,31,45,51]. One of the
disadvantages of this technique is that it can often be difficult to distinguish shadow areas and other
dark surfaces such as water bodies [45]; however, this limitation did not apply to our small study areas
where no water features such as river, lake, or ocean were found. Miura and Midorikawa [52] classified
shadow areas by a histogram thresholding analysis using the NIR band from IKONOS data in order to
eliminate shadow pixels that were difficult to accurately detect slope failure based on the difference in
NDVI between the pre- and post-earthquake images. Lu [53] also separated vegetation from shadows
with the thresholds based on the IKONOS NDVI or NIR images, although it was difficult to extract
cloud shadows from tree shadows. Martinuzzi et al. [54] developed a method for detecting shadow
areas in the NIR band from Landsat data to mask cloud shadows, including topographic shadows
which were not successfully discriminated from each other. This type of limitation to separating
topographic shadows from cloud shadows is not an issue in the UAS imagery as flights can be
conducted under clouds.

Although in our study shadow areas were eliminated with high overall accuracies, those may be
corrected by supervised classification training samples for different shadowed land cover types, instead
of excluding them from further analysis. Other types of shadow corrections include deshadowing by
scaling shadow pixels with combined spectral criteria of NIR and shortwave infrared bands derived
from satellite images [55], which are more sensitive to shadow effects than visible bands, while a
combination of RGB and NIR bands captured by airborne cameras was explored for diffusing shadow
effects and validated by field measurements with a good agreement [56]. Thus, shadow correction
methods should be explored for our further studies by developing a tool to combine spectral criteria
from available bands and/or conducting extra flights within the following days or weeks over the same
area of interest around the same time of the day to be comparable among them.

4.2. Defoliation Detection

Focusing on forestry applications over the past decade, NDVI derived from UAS has been
increasingly used for detecting defoliation at high spatial resolutions and assessing damage severity
by classification techniques [10,12,14–16,23–25]. A continuous improvement in overall accuracy was
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demonstrated in our study by using histogram thresholding classification with the four VIs. NDVI
and NDVIRE performed the best with an overall accuracy of 95%, followed by GRNDVI with 92%
while GNDVI was excluded due to poor performance in determining the threshold values, which may
be explained by the difference in reflectance between two bands selected for calculating each index.
We could explain that the reflectance is generally higher in the green band due to chlorophyll absorption
in blue and red bands [17,47]. Another explanation could be that unhealthy leaves show a notably
higher reflectance than healthy leaves in the range of RGB visible light due to a decrease in chlorophyll
content, while healthy leaves show significantly increased and exceeding reflectance in both the red
edge and NIR bands [15,57,58]. Therefore, a larger difference in reflectance between the two bands
used in any formula (Table 2) leads to higher index values and indicates healthier leaves. At least for
the forest types analyzed in our study, there was no significant difference between NDVI and NDVIRE.
In other words, the red edge band was not particularly more sensitive to defoliation than the NIR band.

Opportunities for future improvements include defoliation detection at the pixel level in
integration with the UAS-derived canopy height model (CHM) at the 3D tree level to automatically
delineate individual tree crowns and extract only pixels detected by the height of interest [14,16,48].
For monitoring the forest inventory as a function of ecosystem services, it will be necessary to estimate
the overall defoliation degree per individual tree which can be calculated by the ratio between pixels
grouped as defoliated and foliated per tree [16]. For further 3D tree research, detecting the structural
change of defoliated trees may be explored as an additional parameter by quantifying a dense point
cloud [15,59–62], which may contain information on cumulative defoliation in time series imagery,
where the density of points on defoliating trees may start to decrease over time [62].

4.3. Foliated Species Discrimination

As the UAS technology advances, studies on species discrimination for forestry applications [24,
63–65] have increased using various classification methods. Most recently, Cardil et al. [16] applied
thresholding classification with NDVI to distinguish among Pinus spp. with three levels of defoliation
and from Quercus ilex in Codo, Spain, with an overall accuracy of 81%. The classification accuracy
was re–evaluated in two of our study areas where we distinguished foliated Pinus spp. from Q. ilex
by histogram thresholding classification with GNDVI with an increased overall accuracy of 93–96%.
We again demonstrated that this comparison among various VIs led to improve the classification
results on species discrimination with GNDVI showing a bimodal histogram distribution in both the
two study areas. This may suggest that the relation between green and NIR bands is the key measure
to distinguish broad leaves from needle leaves among healthy trees, while GNDVI showed poor
performance in defoliation detection. Several studies have suggested that the use of green bands in
NDVI is more sensitive to chlorophyll which is well correlated to leaf area index [41,43,66] as well as that
broad leaves show a much higher reflection in the NIR range than needle leaves [47,67,68]. To examine
the robustness of GNDVI for species discrimination, the similar threshold values determined in Codo
and Olius should be reapplied to additional pine–oak mixed stands in new study areas.

It should be noted that UAS imagery has the advantage of separating pine trees from other species
in mixed stands at tree level, enabling the exclusion of non-pine pixels for further analysis, while this
may not be capable with Sentinel-2 [18] or Landsat 8 [69] data at medium spatial resolutions (10–30 m),
which are too coarse to assess an individual tree crown area. Although the enhancement at spatial
and temporal resolution is one of the significant advantages for using UAS imagery, the spectral
resolution by Parrot SEQUOIA is limited to capturing RGB, red edge, and NIR bands, with wider
bandwidths in the wavelength in comparison to other airborne sensors and satellites which are required
to detect more features with narrower and/or specific bandwidths. Nonetheless, the Parrot SEQUOIA
has been widely used for a relatively good economic performance trade-off in operational forestry
and agriculture applications, with the additional advantage of applying such high-resolution data to
calibrate medium-resolution satellite data [39,49,50,70].
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4.4. Classification Techniques

General findings in the above-mentioned studies suggest that the overall accuracy for shadow
removal, defoliation detection, and species discrimination should increase as the number of classes
decreases, regardless of the technique used for classification. As observed in our study, a series
of pixel-based thresholding analyses generated slightly higher overall accuracies in each confusion
matrix for predicting two classes than object-based Random Forest for predicting four classes in one
combined confusion matrix. One of the limitations of histogram thresholding analyses is that spatially
isolated and fragmented pixels (Figure 9b–d) were as small as a ground resolution of approximately
7 cm to identify the class and assess the accuracy against the referenced orthomosaic image, unless
pixels with similar digital number (DN) values were aggregated. To restrict pixels at a very high
spatial resolution from being dispersed, object-based classification techniques enable to merge them
with adjacent segments according to certain minimum segment size or shape [33]. Despite these
limitations, our study highlighted the simplicity of the histogram thresholding method to suggest
combining the best indices for a series of classifications to extract the relevant information on different
vegetation features.

4.5. Future Research Directions

Among four study areas defined as pine–dominated by land cover map, we noted that all threshold
values of VIs in Codo study area for detecting defoliation were relatively higher than those in the other
three study areas (Table 3). This may be explained by the seasonal difference in reflectance since the
UAS imagery in Codo was captured in the end of November 2017, which was almost two months
before the rest of the UAS flights were conducted in January 2018. It should also be noted that in Hostal
study area the valley detection thresholding to separate foliated class in the multimodal distribution
with GRNDVI (Figure A1c) was not as clear as those with NDVI (Figure A1a) or NDVIRE (Figure A1d),
which is one of the disadvantages of histogram thresholding analyses [29,31]. Consequently, due to
this ambiguous discrimination between defoliated and foliated classes, the classification accuracy with
GRNDVI in Hostal turned out to be 84%, notably the lowest among the four study areas and VIs
tested. As a solution to mitigate any potential errors, multiple flights over the same study area should
be repeated at different dates to determine whether each threshold value is specific to a study area
and/or season for accuracy improvement and monitoring purposes. Provided that the variation in
the threshold limits among our study areas may have been affected by different flight dates, weather
conditions, stand structures, and species composition which are not distinguishable by land cover map,
the estimated average limits in Table 3 are not yet well established to be directly applied to new study
areas on a large scale. Whether the similarity in the range of threshold limits can be achieved in similar
forest types should be explored by applying the average or optimal threshold values (Figure 10a,b) to
additional study areas.

Nevertheless, the enhanced UAS technology enabled us to achieve flights with both RGB and
NIR multispectral cameras simultaneously in one platform. In contrast to conducting separate flights
with each type of camera individually, our approach should have contributed to the consistency of
reflectance between RGB and NIR images recorded at the same time of the day without any temporal
delay, which was evidently visible in shadow areas [16]. Ultimately, such continuous advances in
technology may improve our methodology and hence the classification results as well.

5. Conclusions

Using various VIs derived from very high spatial resolution UAS multispectral imagery, our study
demonstrated quantitative assessments with high overall accuracies in small operational areas in
Catalonia for detecting insect defoliation and potential host tree species in pine-dominated stands
mixed with evergreen oak. With the aim of seeking a simple and robust monitoring tool for forest
practitioners, we explored nested histogram thresholding analyses that achieved the highest overall
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accuracy of 95% with NDVI as well as NDVIRE for defoliation detection in the total study area,
while accuracy results for foliated tree species discrimination were only achievable with GNDVI in
two of the four study areas. In addition, the estimated average thresholds of NDVI and NDVIRE to
detect defoliation were highlighted for evaluating accuracy and uncertainty in sensitivity analyses.
Provided that the robustness of selected VIs is sound, applying the average thresholds may become
a promising simple tool to monitor forest defoliation and an alternative classification method to
complex object-based Random Forest. In future studies, the robustness of the best performed indices
for differentiating specific vegetation features should be explored in new study areas and repeated at
multiple dates to contribute to regional forest health monitoring at the operational level.
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