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Abstract

Pine processionary moth (PPM) feeds on conifer foliage and periodically result in outbreaks

leading to large scale defoliation, causing decreased tree growth, vitality and tree reproduc-

tion capacity. Multispectral high-resolution imagery acquired from a UAS platform was suc-

cessfully used to assess pest tree damage at the tree level in a pine-oak mixed forest. We

generated point clouds and multispectral orthomosaics from UAS through photogrammetric

processes. These were used to automatically delineate individual tree crowns and calculate

vegetation indices such as the normalized difference vegetation index (NDVI) and excess

green index (ExG) to objectively quantify defoliation of trees previously identified. Overall,

our research suggests that UAS imagery and its derived products enable robust estimation

of tree crowns with acceptable accuracy and the assessment of tree defoliation by classify-

ing trees along a gradient from completely defoliated to non-defoliated automatically with

81.8% overall accuracy. The promising results presented in this work should inspire further

research and applications involving a combination of methods allowing the scaling up of the

results on multispectral imagery by integrating satellite remote sensing information in the

assessments over large spatial scales.

1. Introduction

The area covered by forest ecosystems in the Mediterranean has increased during the last cen-

tury due to land abandonment and climate change impacts, which have led to significant

changes in forest dynamics [1–3]. These forest changes an increase in the effects of pests on

trees, partially due to more frequent large-scale outbreaks becoming an increasingly important

disturbance in forest dynamics [4,5]. Amongst these pests we can highlight the increasing

impact of the pine processionary moth (Thaumetopoea pityocampa Dennis and Schiff.,
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Lepidoptera: Notodontidae; henceforth PPM), one of the main pests of Pinus sp., a native spe-

cies of the Mediterranean region including North Africa, southern Europe and some areas of

the Middle East [6]. Life cycle is characterized by a one-year development cycle for short-lived

female moths which typically live for 1 or 2 days and longer-lived males [7]. The cycle involves

adult emergence in summer (June–September), larval feeding during fall and winter, and

pupation in soil followed by a short or prolonged diapause up to several years under specific

circumstances [4,7–9]. The area affected by PPM in Europe is expanding northwards to higher

latitudes and upwards to higher altitudes from where it was absent, probably as a result of

increasing winter temperatures [6].

PPM caterpillars feed on conifer needles resulting in a general weakening of trees and even-

tually cause large scale defoliation at the stand and landscape levels. Intense defoliation nega-

tively affects height and radial tree growth, increase the mortality rate of saplings and reduce

the reproduction capacity of trees [10–12]. At the same time, PPM can trigger a decrease in

tree resistance and resilience against other disturbances such as forest fires, drought conditions

or other pests [5,13,14] that could influence and modify the tree species composition in mixed

forests. PPM damages are associated with the spatial and temporal complexity of Mediterra-

nean landscapes, as well as with its life cycle. Regarding the spatial complexity, trees in frag-

mented small stands suffer PPM damage with varying intensities. However, the current

pattern of outbreaks at landscape level is still largely unknown [15]. Regarding the temporal

complexity, PPM defoliation is maximum at the beginning of spring. During the spring and

summer, if weather conditions are not extremely stressful, the vegetation generally recovers its

initial greenness. There is also lack of knowledge about the effects of forest diversity and mixed

versus monospecific forests on overall pest tree damage [16]. Several studies showed that

diverse forests are less prone to pest insects than monoculture forests [17], which suggests

associational resistance [18]. However, recent studies also reported more damage in mixed for-

ests suggesting associational susceptibility [19], or simply no effect of diversity [20]. However,

recovery time appears to depend on the site characteristics of each forest [21]. Thus, quantify-

ing defoliation processes at landscape level is key to improve the knowledge of PPM damage

patterns and consequently to better guide control measures or improve ecological conditions

to increase forest resistance and resilience to this kind of damages.

Historically, the degree of infestation and mortality by PPM in pine stands [9,15,22] has

been visually assessed in the field [10] by forestry technicians or through interpretation of

aerial photographs [23]. However, field inventories are expensive and require a large amount

of manpower and resources while aerial photographs taken in periods relevant to assess PPM

impacts are not always readily available or may lack sufficient temporal details. In addition,

visual interpretation can be subjective if not carefully validated and may not always provide

the required quantitative information when assessing spatial variability in PPM impacts. More

recently, multi-temporal satellite images and remote sensing products such as Landsat The-

matic Mapper (TM), Moderate Resolution Imaging Spectroradiometer (MODIS), TerraSAR-X

and light detection and ranging (LiDAR), have been extensively used in monitoring forest

health attacks by pest insects [23–26] and found to be useful for insect outbreak surveys at

large scale [27]. Yet, even these medium-resolution remote sensing products have been unable

to capture the spatial heterogeneity in agroforestry mosaics or complex defoliation patterns

caused by PPM at local scale [27] and, especially, in mixed forests at tree level.

Currently, unmanned aerial systems (UAS) platform have also become suitable tools to per-

form small-scale analyses as well as local-scale sampling, assessment and validation that can be

complemented and integrated with aerial or satellite imagery for broader spatial scale analyses

[28,29]. Most recent years have experienced an enormous increase in the use of UAS due to

low infrastructure requirements, ease of deployment, acquisition and suitability for
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photogrammetric workflows [30,31]. The current availability of photogrammetric software

allows for handling and processing of large spatial datasets. UAS have been applied in fine-

scale studies to inventory forest resources [30], map diseases [32], assess pest damages at tree

level [5,27,33,34] and at the landscape level [35,36], quantify spatial gaps or estimate post-har-

vest soil displacement [37]. UAS platforms are establishing a niche in low cost image acquisi-

tion at local scales that make this technology an alternative cost-effective option in forestry

applications. However, most common cameras employed in UAS surveys are digital RGB cam-

eras [38], or are adapting one of the visible bands for NIR imagery acquisition [30]. To date,

only a few studies with multispectral cameras such as Tetracam ADC Lite, MicaSenseRedEdge

[39] or SEQUOIA (Parrot SA, Paris, France) [40] have demonstrated improvements in the

analysis of fine-scale forest dynamics.

In this study, we aimed at evaluating the potential use of multispectral high-resolution

imagery acquired from a UAS platform and image processing techniques to quantitatively

assess PPM impact on a pine-oak mixed forest. To achieve this objective, we used point clouds

and multispectral orthomosaics from UAS generated through photogrammetric processes.

Point clouds have proven useful to generate high resolution digital surface models (DSM)

from which it is possible to automatically identify and delineate individual trees [28,30,41]. We

hypothesized that multispectral information will enable us to calculate vegetation indices such

as NDVI to objectively quantify the degree of defoliation of the pines previously delineated

from DSM [21,42,43] after identifying tree species [44,45]. Field data was used to validate our

results and assess the level of detail and accuracy of our method to investigate the spatial

dynamics of the pest. More precisely, the presented study attempts to develop a method using

high resolution multispectral images collected with UAS to automatically quantify defoliation

by PPM for individual trees and classify them as non-defoliated, partially defoliated and

completely defoliated in a pine-oak mixed forest.

2. Materials and methods

2.1 Study area

The study was conducted in “Codo” site (longitude = 1.544˚; latitude = 42.127˚; altitude =

1300m), a mixed forest area located near the city of Solsona (Lleida, Catalonia, NE Spain, Fig

1) dominated by holm oaks (Quercus ilex L.) and Scots pines (Pinus sylvestris L). The dimen-

sion of the study area was 350 × 350m (12.25 ha) representing a Mediterranean climate zone

characterized by hot dry summers and mild wet winters.

2.2 UAS-based image acquisitionand data preprocessing

Multispectral high spatial resolution image data was collected using a quadcopter (UAS Phan-

tom 3 from DJI) in two successive flights with one hour gap between both. This UAS is capable

of autonomous, waypoint flight following a preplanned route. In the first flight, the UAS was

equipped with the multispectral camera Parrot SEQUOIA and, in the second with RGB

PC300S Phantom 3 camera, to create RGB orthomosaics. The Parrot SEQUOIA camera has

four 1.2-megapixel monochrome sensors that collect global shutter imagery along four discrete

spectral bands: green (center wavelength -CW-: 550 nm; bandwidth -BW-: 40 nm), red

(CW:660 nm; BW: 40 nm), red edge (CW: 735 nm; BW: 10 nm) and near infrared -NIR- (CW:

790 nm; BW: 40 nm). The horizontal (HFOV), vertical (VFOV) and diagonal (DFOV) fields of

view of the multispectral camera are 70.6˚, 52.6˚ and 89.6˚, respectively, with a focal length of

4 mm. With a flight altitude of 120 m and an image overlap of 80%, a ground sample distance

(GSD) of 15 cm was achieved. The camera was bundled with an irradiance sensor to record

light conditions in the same spectral bands as the multispectral sensor. The total weight of the
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multispectral camera with the irradiance sensor is 107 g. This camera stored 16-bit RAW files

(based on 10-bit data) during image shooting. The ISO value and exposure time were set to be

automatic. Every image capture setting was saved in a text metadata file together with the irra-

diance sensor data. The text metadata files register information about ISO, aperture, shutter

speed, sensor response and optical system and vignetting. The optical system and vignetting

are registered by the irradiance sensor. Additionally, irradiance panels available by AIRINOV

photos were taken at the beginning of the flight. An absolute reference for each spectral band

was set through the calibration target, which allow getting absolute reflectance values. The

aerial survey was carried out on November 26th, 2017 within one hour of the solar zenith in a

clear sky and no winds. Finally, a total of 202 SEQUOIA photographs were collected to cover

the study area of Codo.

Pix4Dmapper desktop photogrammetric software (https://pix4d.com/; accessed on 2 April

2018) following the "Ag Multispectral" template was used to generate point clouds, 3D recon-

struction, radiometric calibrations and correction and finally the orthomosaics. This software

integrates computes vision techniques with photogrammetry algorithms [30] to obtain high

accuracy in aerial imagery processing. Pix4Dmapper Pro computes key points on the single

images and uses them to find matches between images. From these initial matches, the soft-

ware runs several automatic aerial triangulation (AAT), bundle block adjustments (BBA) and

camera self-calibration steps iteratively until optimal reconstruction is achieved [40]. Then, a

densified point cloud is generated to obtain a highly detailed digital surface model (DSM) that

will be used to generate the final reflectance orthomosaics maps for every plot. The reflectance

maps were achieved applying radiometric calibrations and corrections. First, the images of the

irradiance panels taken at the beginning of the flight allow the radiometric calibration. Second,

we also applied a "Camera and Sun irradiance" radiometric correction to correct for factors

Fig 1. An RGB orthomosaic of the study are, Codo in Catalonia (Spain). Base map source: USGS National Map Viewer.

https://doi.org/10.1371/journal.pone.0213027.g001
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that distort the true reflectance pixel values and achieving a radiometric trustful measure of

the terrain reflectance taking into account the information registered in the text metadata files

(EXIF and XMP tags) for every single photogram. Pix4Dmapper applies this calibration and

correction process to every single photogram just before achieve the final reflectance orthomo-

saic for every spectral band. Once the radiometric corrections were done for every photogram,

the final orthomosaic was generated through automated workflows and SFM (structure from

motion) methods [46] with image identification and feature matching. After the initial align-

ment through bundle adjustment, the resultant sparse cloud was assessed for projection errors,

followed by reconstruction of dense point clouds using the cartographic UTM projection sys-

tem. With original photos projected onto the 3D models, blending the overlap areas produced

the reflectance orthomosaic for each spectral band.

The UAS-derived 3-D point cloud was used to compute a digital terrain model (DTM) and

a canopy height model (CHM) based on the approach developed by Mohan et al. (2017) (Fig

2). First, one m DTM was created using the GridSurfaceCreate function in FUSION/LDV 3.42

[47] after classifying ground points using a progressive Triangulated Irregular Network (TIN)

densification algorithm implemented in lasground (settings: step is 10 m, bulge is 0.5 m, spike

is 1 m, offset is 0.05 m), LAStools [48]. Secondly, the UAS-derived 3-D point cloud was nor-

malized to height above ground by subtraction of the DTM elevation from the Z coordinate of

each point projected on the ground using the ClipData tool. Lastly, the CanopyModel func-

tion, also in FUSION/LDV, was used to compute the CHM at 0.5 m spatial resolution for the

study site.

2.3 Field validation data

A randomly selected sample of 110 trees from the Codo forest was acquired through a visual

assessment at tree level (Fig 3). The sample consisted of 25 holm oak (they were excluded from

the analysis to assess percentage of defoliation at tree level because they were not defoliated),

13 non-defoliated pines, 29 partially defoliated pines and 43 completely defoliated pines

depending on the level of defoliation. Pines were classified as non-defoliated, partially defoli-

ated and completely defoliated trees when having defoliation < 15%, between 15% and 85%,

and> 85%, respectively.

2.4 Data analysis

2.4.1 Individual tree identification and delineation (ITDe). The rLiDAR package [49]

in R [50]was used in this study for individual tree delineation and defoliation assessment on

the UAS-derived CHM. First, the FindTreesCHM function from this package, based on a local

maximum algorithm, was applied for automatic detection of tree tops on the UAS-derived

CHM using fixed tree and smoothed window sizes of 3x3 pixels. Secondly, the ForestCAS

function from the same package, based on the Voronoi tessellation [51], was applied for indi-

vidual tree delineation (ITDe) on the UAS-derived (Fig 1) based on Silva et al., (2017).

Independently, the 110 randomly selected trees in the field were manually onscreen-digi-

tized on the orthomosaic image in order to assess the accuracy of the automatic ITDe and

compare the results obtained with this method in terms of PPM defoliation. We analyzed spa-

tial discrepancies in each tree between ITDe and manual tree crown delineation (MCDe) by

using the Sørensen’s coefficient (SC; (Legendre and Legendre, 1998)) calculated as follows:

SC ¼
2A

2Aþ Bþ C
ð1Þ

where A is the area coded as “tree crown” for both ITDe and MCDe, B is the area coded as
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Fig 2. A canopy height model (CHM) derived from UAS-derived 3-D point cloud and a digital terrain model

(DTM). (A) UAS-derived 3-D point cloud. (B) Digital terrain model. (C) Canopy height model.

https://doi.org/10.1371/journal.pone.0213027.g002
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Fig 3. Object-based image analysis. (A) RGB orthomosaic image with crown surfaces delineated by ITDe. (B) Image classification with NDVI for non-

defoliated (in green) surfaces and defoliated / non-vegetation background (in black) with ITDe. (C) Colour-infrared composite using green, red and nir

reflectance bands with crown surfaces delineated by ITDe. (D) Unsupervised classification with ExG for isolating shaded pixels (in grey). (E) Manual

digitization of tree crowns (MCDe) for validating the results by ITDe. (F) Image classification with NDVI for non-defoliated (in green) surfaces and

defoliated / non-vegetation background (in black) with MCDe.

https://doi.org/10.1371/journal.pone.0213027.g003
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“tree crown” in the ITDe and “no crown” in the MCDe and, C is the area coded as “tree

crown” in the MCDe and “no crown” in the ITDe. SC coefficient values range between 0 and

1, with values close to 1 indicating very high spatial agreement between the variables.

2.4.2 Tree species identification and defoliation assessment based on NIR and RGB

imagery. In addition to visible bands in RGB images, the near-infrared (NIR) reflectance of

the multispectral camera was use for tree species identification and defoliation detection as a

stress indicator, which may measure plant health more precisely than visibly evident greenness

[23,43,52]. Thus, we considered normalized difference vegetation index (NDVI), a ratio

between the red (R) and NIR values, as potentially the most robust and widely tested indicator

in order to predict the tree species and defoliation degree [23].

NDVI ¼
NIR � R
NIRþ R

ð2Þ

In order to separate the vegetation from the background to assess PPM defoliation, excess

green index (ExG) was calculated in this study. Previous studies successfully applied this index

together with NDVI to image classification in their object-based image analysis (OBIA)

[53,54].

ExG ¼ 2
G

Rþ Gþ B

� �

�
R

Rþ Gþ B
�

B
Rþ Gþ B

ð3Þ

After automatically identifying and delineating tree crowns of the 110 selected trees, we

identified tree species by using the mean NDVI of pixel values for each of the delineated

crown. The default threshold value to classify the selected trees as holm oak (NDVI� 0.42) or

pine (NDVI < 0.42) was selected by sensitivity analysis on the NDVI range in comparison

with field data (increasing by 0.01) considering the mean NDVI of pixel values per each delin-

eated crown.

Image classification with NDVI was first processed for separating defoliated crown surfaces

from non-defoliated ones by threshold analysis. The default threshold value was selected by

automated unsupervised classification and compared to sensitivity analysis on the NDVI

range (increasing by 0.01) against the orthomosaic images. Then threshold classification was

applied at the pixel level: defoliated in black (NDVI <0.27) or non-defoliated in green

(NDVI� 0.27) as illustrated in Fig 3B.

It was noted that some shaded pixels in the RGB orthomosaic image, corresponding to dark

grey-black areas by heavy shadowing in Fig 3A, were not visually distinguishable between

defoliated and non-defoliated crown surfaces. Therefore, we decided to exclude those from

thresholding with NDVI for the purpose of effectively validating classification accuracy. Since

NDVI in general can detect non-defoliated leaves in shaded pixels [53], it was not successful to

achieve the threshold value of NDVI for isolating shaded pixels exclusively. However, calculat-

ing such specific vegetation index as ExG enabled automated isolation of shaded pixels by

unsupervised classification, where ExG is lower than -0.06 (Fig 3D). Finally, we applied

another class ‘shaded’ to automatically mask all shaded pixels, regardless of the NDVI value, so

that those pixels were excluded from the crown surface area for further analysis.

To evaluate the accuracy of threshold classification (defoliated, non-defoliated, shaded), we

show a confusion matrix by assessing 100 pixels that were randomly selected and visually inter-

preted against the orthomosaic image. The overall classification accuracy between classified
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imagery and reference imagery was calculate as:

Accuracy %ð Þ ¼
number of pixels correctly classif ied
total number of pixels referenced

ð4Þ

We systematically quantified the percentage of defoliation by PPM in each pine by using

both the automatic ITDe and the MCDe (Fig 3B and 3F). For evaluating the overall defoliation

degree at tree level, pixels classified as defoliated were grouped by tree ID and calculated as fol-

lows:

Defoliation per tree %ð Þ ¼
number of defoliated pixels

sum of defoliated and non � defoliated pixels
ð5Þ

We statistically analyzed relationships between the predicted defoliation degree with NDVI

(X) and the observed defoliation % on the orthomosaic image (Y). The relationship is

expressed in linear regression:

Yi ¼ aXi þ b ð6Þ

where Yi represents the percentage of defoliation per tree interpreted on the orthomosaic

image, Xi represents the portion of pixels classified as defoliated with NDVI per tree, and a
and b are the slope and intercept of the regression line. Based on the same 110 selected sample

trees from the study area used to MCDe, linear regression models were fitted to evaluate both

the slope of the regression line and coefficient of determination (R2).

2.4.3. Accuracy of defoliated tree identification and validation of percent defoliation.

To assess image classification accuracy in our PPM defoliation estimates at tree level and to

distinguish between non-defoliated, partially defoliated and completely defoliated trees, we

computed a confusion matrix of the 110 selected trees that were field identified and compared

them with the obtained image classifications. Validation of the defoliation classification was

performed by comparing field measured defoliation against the classification derived defolia-

tion at tree level using both ITDe (Fig 3A and 3B) and MCDe (Fig 3E and 3F).

3. Results

3.1 Accuracy of the individual tree detection and species identification

The algorithm on the UAS-derived CHM effectively detected individual trees. The algorithm

correctly identified all the 110 trees randomly selected through the field survey (Fig 4A). The

accuracy of the automatic ITDe was also analyzed in comparison to the MCDe on the ortho-

mosaic. The overall spatial agreement of crown area for the 110 selected trees was high with a

mean SC of 0.75 and a standard deviation of 0.11.

The NDVI-based tree species identification after identifying and delineating tree crowns

was effective. We found significant differences in the mean NDVI of pines and holm oaks (p-

value < 0.001; Fig 5A) and among non-defoliated, partially defoliated and completely defoli-

ated pines and holm oaks at the same statistical significance (Fig 5B). All pines were correctly

classified by the method. However, 5 of 25 holm oaks were wrongly identified, being classified

as healthy pines (Tables 1 and 2). Therefore, the overall rate of success to identify the tree spe-

cies was 95.5%.

3.2 PPM defoliation at pixel level

We assessed the classification accuracy of the three defoliation classes (defoliated, non-defoli-

ated, and shaded) by randomly selecting 100 pixels and validating with the reference of the
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Fig 4. Tree species identification and pine processionary moth defoliation in pines in the Codo forest site. (A) Individutal automatic tree delination on

the colour-infrared composite orthomosaic using green, red and nir reflectance bands. (B) Individutal automatic tree delination on the RGB orthomosaic.

(C) Automatic tree classification in the field as holm oak or non-defoliated, partially defoliated and completely defoliated pine trhough multispectral high-

resolution imagery.

https://doi.org/10.1371/journal.pone.0213027.g004
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Fig 5. Mean NDVI at the tree level. (A) Mean NDVI values and standard error for pines (P) and holm oaks (Q). (B) completely defoliated (CD), partially defoliated

(D) and non-defoliated pines (H) and holm oaks (Q) of the 110 randomly selected trees.

https://doi.org/10.1371/journal.pone.0213027.g005

Table 1. Confusion matrix for non-defoliated, partially defoliated and completely defoliated trees measured in the field or classified by using the multispectral

imagery with the automatic ITDe.

Multispectral imagery with automatic ITDe

Field Completely defoliated Partially Defoliated Non-defoliated Holm oak Total Accuracy (%)

Completely defoliated 32 11 0 0 43 74

Partially Defoliated 0 28 1 0 29 97

Non-defoliated 0 4 9 0 13 69

Holm oak 0 2 3 20 25 80

Total 32 45 13 20 110

Accuracy (%) 100 62 69 100 81

https://doi.org/10.1371/journal.pone.0213027.t001

Table 2. Confusion matrix for non-defoliated, partially defoliated and completely defoliated trees measured in the field or classified by using the multispectral

imagery with the manual onscreen-digitized tree segmentation (MCDe).

Multispectral imagery with MCDe

Field Completely defoliated Partially Defoliated Non-defoliated Holm oak Total Accuracy (%)

Completely defoliated 40 3 0 0 43 93

Partially Defoliated 2 24 3 0 29 83

Non-defoliated 0 1 12 0 13 92

Holm oak 0 1 4 20 25 80

Total 42 29 19 20 110

Accuracy (%) 95 83 63 100 87

https://doi.org/10.1371/journal.pone.0213027.t002

Unmanned aerial systems to quantify pine processionary moth defoliation

PLOS ONE | https://doi.org/10.1371/journal.pone.0213027 March 19, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0213027.g005
https://doi.org/10.1371/journal.pone.0213027.t001
https://doi.org/10.1371/journal.pone.0213027.t002
https://doi.org/10.1371/journal.pone.0213027


orthomosaic image. The results were presented in a confusion matrix (Table 3). Out of the

selected 100 pixels, 41 pixels were classified as defoliated with the NDVI threshold

(NDVI = 0.27) while 34 were correctly classified as defoliated. Among 43 pixels classified as

non-defoliated, 37 of them were correct (86%). Class ‘shaded’ found 10 out of 16 pixels cor-

rectly classified (62.5%). It should be noted that the number of pixels classified as defoliated

was underestimated (omission errors) whereas the one classified as non-defoliated was overes-

timated (commission errors). The overall accuracy of classification was calculated as follows:

Overall accuracy %ð Þ ¼
ð34þ 37þ 10Þ pixels correctly classif ied

100 pixels in total
¼ 81% ð7Þ

Finally, the kappa coefficient indicates a level of agreement of 69%.

3.3 PPM defoliation at tree level

The results of our method using UAS multispectral imagery and ITDe to classify trees as non-

defoliated, partially defoliated and completely defoliated pines and holm oaks was related to

the data of 110 randomly selected trees though the field survey in a confusion matrix to calcu-

late accuracy (Table 1 and Fig 4). The overall accuracy of the classification was 81.8% (94.1%

when combining partially defoliated and completely defoliated trees in the same category with-

out considering holm oaks). The method correctly distinguished all pines while 5 of the 25

holm oaks were wrongly classified as pines (Tables 1 and 2). All completely defoliated trees

identified by this method were correctly classified. Among the 13 non-defoliated pines, 9

trees were correctly classified while 4 were wrongly classified as partially defoliated and none

was classified as completely defoliated (Table 1). Although the classification accuracy for

completely defoliated trees was 74% (Table 1), 11 completely defoliated trees in the field were

classified as partially defoliated. The average percentage of defoliation of those trees was 74.8%

and none of them was classified as non-defoliated.

The overall accuracy of classification with MCDe increased up to 87.2% of the 110 selected

trees (95.2% when considering only non-defoliated and partially defoliated pines). Table 2

shows the accuracy for classifying the trees as non-defoliated, partially defoliated and

completely defoliated pines or holm oaks by using the multispectral imagery with MCDe,

which was overall higher than that with ITDe.

A linear regression model indicated the significant relationship between the percentage of

defoliation measured through UAS multispectral images with ITDe or MCDe in pines and

percentage ofdefoliation measured in the field (Fig 6). Our results showed that the relationship

between the field measured defoliation and through UAS multispectral images with ITDe or

Table 3. Confusion matrix for classification assessment at the pixel level.

Classified Image

Reference Image Class Value Defoliated Non-defoliated Shaded Total Accuracy (%) Kappa

Defoliated 34 4 6 44 77

Non-defoliated 3 37 0 40 93

Shaded 4 2 10 16 63

Total 41 43 16 100

Accuracy (%) 83 86 63 81

Kappa 69

The classified image was based on vegetation indices while RGB orthomosaic was used as the reference image.

https://doi.org/10.1371/journal.pone.0213027.t003
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MCDe was highly significant (p-value<0.001), and that the model’s predictive accuracy was

very high in both cases (R2 = 0.91 for ITDe and R2 = 0.93 for MCDe).

4. Discussion

Under a global change context with more frequent extreme climatic events [9,55–57] PPM

outbreaks are expected to become more frequent on Mediterranean coniferous and mixed for-

ests. In this context, effective monitoring techniques are urgently required over a large spatial

scales. The use of UAS-based image acquisition technology is emerging research in assessment

of forest pests such as the PPM over representative spatial and temporal scales. Furthermore,

the acquisition of data through UAS may also be useful to complement, or even substitute field

assessments with large scale quantitative evaluations when detailed results are required. Several

authors have suggested low-cost image acquisition with UAS platforms as an alternative option

to assess the percentage of defoliated trees and the level of defoliation in each tree quantita-

tively, and obtain promising validation results with field measurements [5,27]. In this study,

we have used RGB and NIR imagery to account for tree species and degree of defoliation in

mix pine-oak stands. We identified pine and holm oak and classified pines as non-defoliated,

partially defoliated and completely defoliated, after being identified and delineated by a local

maximum algorithm on a CHM, as well as assessing the percentage of defoliation of each tree.

Our results showed that the use of UAS multispectral images through NDVI after automati-

cally delineating tree crowns can be very useful for identifying tree species in mixed forests in

order to assess PPM impacts on forests. The rate of success identifying the two tree species was

very high on the 110 selected trees although further research would be needed to have a more

robust methodology to be applied in other locations. In this sense, the combination of various

metrics using the multispectral images, as well Green Normalized Difference Vegetation Index

Fig 6. Linear regression model between PPM defoliation measured in the field and through UAS multispectral images in Codo forest site with ITDe (A) and

MCDe (B). Green: non-defoliated trees; orange: partially defoliated; red: completely defoliated.

https://doi.org/10.1371/journal.pone.0213027.g006
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(GNDVI), Normalized Green-Red Vegetation Index (GRVI), Normalized Green-Blue Index

(GBNDVI) or Normalized NIR-Blue Index (BNDVI), could improve the results [45,58]. Also,

other recent studies used a larger sample size for species identification [44,45,58], determining

when is the best time window to achieve an optimal species discrimination, an approach that

could be useful given the PPM life cycle.

Field validation showed that defoliation assessment through UAS multispectral images with

ITDe was accurate. The statistical models showed a significant correlation between the defolia-

tion degree measured in the field and UAS technology at tree level and, therefore, our method-

ology may be used by forest managers to quantitatively assess the level of defoliation of

individual trees. Moreover, this approach enabled us to classify pines among non-defoliated,

partially defoliated and completely defoliated automatically after tree species identification

with a classification accuracy of 81.8% with ITDe and even higher with MCDe (87.2%). This

result was slightly more accurate than that obtained in the previous study [5] using RGB imag-

ery in pure pine forest, in which the overall accuracy of the methodology to classify trees as

partially defoliated or non-defoliated with MCDe was 79%. Our methodology using NDVI

and removing shaded pixels detected by the ExG increased the classification accuracy between

non-defoliated and partially defoliated trees up to 95.2% with MCDe. Therefore, in addition to

RGB imagery, the use of multispectral imagery and vegetation indices such as NDVI may have

improved assessment of PPM defoliation [27]. Although NDVI is the most widely used and

tested index for monitoring of forest insect defoliation [23], further research would be needed

to evaluate whether other indices among the spectral band scan improve the accuracy of PPM

defoliation assessments. Furthermore, improvements in algorithms to identify and delineate

individual trees may enhance the accuracy of the defoliation estimations at tree level as our

results with MCDe demonstrated. In the Codo case study, the algorithm based on the UAS-

derived CHM was able to successfully identify all the selected trees. Previously, other studies

with different tree species, canopy cover and tree heights have found the accuracy higher than

85% in detecting individual trees, suggesting that the tree identification accuracy was high in

general [41,59,60]. Yet, there is no standardized accuracy assessment procedure for ITDe,

therefore, it is extremely difficult to compare ITDe algorithms unless multiple approaches are

tested on a single study area using the same datasets and metrics [61]. Nonetheless, it seems

evident that improvements in ITDe will enhance the estimation accuracy of PPM defoliation

[62]. Our approach provides accurate PPM impact assessments with an efficient data process-

ing to delineate individual trees in terms of time and staff, allowing the quantitative estimation

of defoliation at tree-level scale in larger scales than MCDe. As expected, the accuracy levels of

this methodology to analyze PPM defoliation at high resolution were higher than other previ-

ous studies using other techniques and methods with airborne laser scanning or satellite data

such as Landsat or MODIS at medium resolution [5,43,63–65] and can be used in mixed forest

to assess PPM defoliation at tree level.

At the pixel level, the overall classification accuracy among partially defoliated, non-defoli-

ated and shaded was 81% in the high resolution NIR imagery, which was as high as that at the

tree level with ITDe. The use of NDVI in general has the advantage of detecting non-defoliated

pixels that cannot be visibly detected by RGB imagery due to shade as has been demonstrated

in agricultural areas [53], but we think that it is still necessary to achieve some improvements

in the multispectral sensors and/or in radiometric calibrations for forest areas as Codo. This

type of invisibility in the orthomosaic image may make it difficult to validate the classification

accuracy of predicted non-defoliated pixels based on NDVI. Another limitation was the one

hour difference between the flights with the RGB camera and the multispectral camera. This

temporal difference may have contributed to slight increases in the uncertainty in shaded
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pixels. In the future study the simultaneous flight with both RGB and multispectral cameras, as

the UAS technology advances, may improve our methodology and the results.

The use of UAS technology offers several advantages when applied to the defoliation assess-

ment caused by insect pests in spite of the fact that substantial investment in equipment, infra-

structure and training of people is necessary. The key highlights of those advantages include

(1) data acquisition is usually more efficient in terms of time, quality and manpower, (2) the

technology has a great capacity to monitor and assess areas with difficult access (3) researchers

can easily derive quantitative methods to estimate defoliation at tree level and (4) this informa-

tion can be analyzed at forest stand scale which is the work scale of forest managers and even-

tually be repeated in time thus providing the potential for the development of long term forest

health monitoring programs. Finally, (5) UAS high-resolution data can be a great source of

information to calibrate medium resolution remote sensing information derived from satel-

lites to map information in coarser scales (Fraser et al, 2017; Pla et al, 2017). Nevertheless, it

should be noted that several methodological constraints need to be considered when planning

for the large area deployment of UAS technologies in the estimation of defoliation levels such

as the regulations to use UAS in urban areas and areas located near airfields.

5. Conclusions

In this study, we investigated the use of multispectral high-resolution imagery acquired from a

UAS platform and image processing techniques to quantitatively assess PPM impact on a

pine-oak mixed forest at tree level. Overall, this research suggested that UAS imagery and its

derived products, such as canopy height model and normalized difference vegetation index,

enabled us to estimate tree species, count individual trees with acceptable accuracy and assess

defoliation using canopy cover at tree level by classifying pines non-defoliated, partially defoli-

ated and completely defoliated automatically with high accuracy. Moreover, the accuracy of

our proposed methodology at tree level was higher than previous studies. This proposed

framework highlights the future potential of UAS, multispectral imagery and structure-from-

motion algorithms for individual tree detection, PPM quantification, qualification and moni-

toring. Thus, we believe that the promising results presented here in should inspire further

research and applications to the forest health assessments.
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vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: Opportuni-

ties and challenges. Sensors (Switzerland). 2018; 18. https://doi.org/10.3390/s18020586 PMID:

29443914

41. Mohan M, Silva C, Klauberg C, Jat P, Catts G, Cardil A, et al. Individual Tree Detection from Unmanned

Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests.

2017; 8: 340. https://doi.org/10.3390/f8090340

42. Deshayes M, Guyon D, Stach N, Hagolle O, Deshayes M, Guyon D, et al. The contribution of remote

sensing to the assessment of drought effects in forest ecosystems To cite this version: The contribution

of remote sensing to the assessment of drought e ff ects in forest ecosystems. 2006;

43. Townsend PA, Singh A, Foster JR, Rehberg NJ, Kingdon CC, Eshleman KN, et al. A general Landsat

model to predict canopy defoliation in broadleaf deciduous forests. Remote Sens Environ. 2012; 119:

255–265. https://doi.org/10.1016/j.rse.2011.12.023

44. Gini R, Passoni D, Pinto L, Sona G. Use of unmanned aerial systems for multispectral survey and tree

classification: A test in a park area of northern Italy. Eur J Remote Sens. 2014; 47: 251–269. https://doi.

org/10.5721/EuJRS20144716

45. Michez A, Piegay H, Lisein J, Claessens H, Lejeune P. Classification of riparian forest species and

health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ

Monit Assess. Netherlands; 2016; 188: 146. https://doi.org/10.1007/s10661-015-4996-2 PMID:

26850712

46. Lucieera A, Turner D, Kingb DH, Robinson SA. Using an Unmanned Aerial Vehicle (UAV) to capture

micro-topography of Antarctic moss beds. Int J Appl Earth Obs Geoinf. 2014; 27: 52–62. https://doi.org/

10.1016/j.jag.2013.05.011

47. Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data.

ISPRS J Photogramm Remote Sens. 1998; 53: 193–203. https://doi.org/10.1016/S0924-2716(98)

00009-4

48. Isenburg M. LAStools—Efficient Tools for LiDAR Processing [Internet]. 2015.

49. Silva C, Crookston N, Hudak A, Vierling L, Klauberg C, Cardil A. rLiDAR: An R Package for Reading,

Processing and Visualizing LiDAR (Light Detection and Ranging) Data [Internet]. 2017. https://cran.r-

project.org/web/packages/rLiDAR/rLiDAR.pdf

50. R core development team. R 3.2.4. 2017;

51. Aurenhammer F. Voronoi Diagrams: a Survey of a Fundamental Geometric Data Structure. ACM Com-

put Surv. New York, NY, USA: ACM; 1991; 23: 345–405. https://doi.org/10.1145/116873.116880

52. Wang J, Sammis TW, Gutschick VP, Gebremichael M, Dennis SO, Harrison RE. Review of satellite

remote sensing use in forest health studies. Open Geogr J. 2010; 3: 28–42. https://doi.org/10.2174/

1874923201003010028

53. Lottes P, Khanna R, Pfeifer J, Siegwart R, Stachniss C. UAV-based crop and weed classification for

smart farming. 2017 IEEE Int Conf Robot Autom. 2017; 3024–3031.
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